Biosynthesis of Silver Nanoparticles: Minireview

Main Article Content

Alaa Alnaimat
Intesar Aljamaeen

Abstract

In principle, nanoscience focus on the understanding of the structure, physical and chemical properties of nano size objects. Nanoscience and nanotechnology are both recent and active ongoing branch of science includes multi interdisciplinary sciences. On the other hand, nanotechnology considered as the invested outcomes of the obtained fundamental knowledge about nano objects in various commercial, industrial, environmental and medical sectors. All nano scale matters regardless of their nature referred to as nano-objects were the prefix ‘nano’ mean one millionth of millimeter size. Due to their nano size and high surface area, metal nanoparticles exhibits unique and novel physical and chemical properties compared to their macro scale counterparts. They are considered as very interesting and popular antimicrobial agent with wide spectrum activity against the variety of pathogenic bacteria and fungi. Three main methods were routinely used for metal nanoparticles formation that are chemical, physical and biological approaches. As eco-friendly, cheap and safe synthesis approach without the use of toxic chemicals and free of resulted hazardous byproducts several extracellular and intracellular biological methods using bacteria, fungi, plants or their extracts were reported that known collectively as green nanotechnology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Articles

References

Al-Limoun, M., Qaralleh, H. N., Khleifat, K. M., Al-Anber, M., Al-Tarawneh, A., Al-sharafa, K., ... & Al-soub, T. (2020). Culture Media Composition and Reduction Potential Optimization of Mycelia-free Filtrate for the Biosynthesis of Silver Nanoparticles Using the Fungus Tritirachium oryzae W5H. Current Nanoscience, 16(5), 757-769.

Aljundi, I. H., Khleifat, K. M., Khlaifat, A. M., Ibrahim, A. M., Tarawneh, K. A., & Tarawneh, S. A. (2010). Biodegradation of 2-chlorobenzoic acid by Klebsiella oxytoca: mathematical modeling and effect of some growth conditions. Industrial & Engineering Chemistry Research, 49(16), 7159-7167.

Aljundi, I. H., & Khleifat, K. M. (2010). Biosorption of lead by E. coli strains expressingVitreoscilla hemoglobin: Isotherm modeling with two?and three?parameter models. Engineering in Life Sciences, 10(3), 225-232.

Allimoun, M. O., Ananzeh, M. R., & Khleifat, K. M. (2015). Screening selection and optimization of extracellular methanol and ethanol tolerant lipase from Acinetobacter sp. K5b4. International Journal of Biosciences, 6(10), 44-56.

ALrawashdeh, I. N., Qaralleh, H., Al-limoun, M. O., & Khleifat, K. M. (2019). Antibactrial Activity of Asteriscus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens. arXiv preprint arXiv:1911.02245.

Al-Tawarah, N. M., Qaralleh, H., Khlaifat, A. M., Nofal, M. N., Alqaraleh, M., Khleifat, K. M., ... & Al Shhab, M. A. (2020). Anticancer and Antibacterial Properties of Verthemia Iphionides Essential Oil/Silver Nanoparticles. Biomedical & Pharmacology Journal, 13(3), 1175-1184.

Panác?ek, A., Kvitek, L., Prucek, R., Kolá?, M., Vec?e?ová, R., Pizúrová, N., ... & Zbo?il, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110(33), 16248-16253.

Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of nanoscience and nanotechnology, 5(10), 1665-1671.

Besinis, A., De Peralta, T., & Handy, R. D. (2014). The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8(1), 1-16.

Calderón-Jiménez, B., Johnson, M. E., Montoro Bustos, A. R., Murphy, K. E., Winchester, M. R., & Vega Baudrit, J. R. (2017). Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Frontiers in chemistry, 5, 6.

Dolgaev, S. I., Simakin, A. V., Voronov, V. V., Shafeev, G. A., & Bozon-Verduraz, F. (2002). Nanoparticles produced by laser ablation of solids in liquid environment. Applied surface science, 186(1-4), 546-551.

Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of nanobiotechnology, 3(1), 8.

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.

Galdiero, S., Falanga, A., Vitiello, M., D’Isanto, M., Cantisani, M., Kampanaraki, A., ... & Galdiero, M. (2008). Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity. peptides, 29(9), 1461-1471.

Ghosh, S. K., Kundu, S., Mandal, M., Nath, S., & Pal, T. (2003). Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. Journal of nanoparticle research, 5(5-6), 577-587.

Gopinath, P., Gogoi, S. K., Chattopadhyay, A., & Ghosh, S. S. (2008). Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology, 19(7), 075104.

Gurunathan, S., Han, J. W., Eppakayala, V., Jeyaraj, M., & Kim, J. H. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed research international, 2013.Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335

Hahm, J. I., & Lieber, C. M. (2004). Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters, 4(1), 51-54.

Jaafreh, M., Khleifat, K. M., Qaralleh, H., & Al-limoun, M. O. (2019). Antibacterial and Antioxidant Activities of Centeurea damascena Methanolic Extract. arXiv preprint arXiv:1911.02243.

Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. R. (2009). Plant system: nature's nanofactory. Colloids and Surfaces B: Biointerfaces, 73(2), 219-223.

Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology and Medicine, 11(7), 1603-1611.

Jun, B. H., Noh, M. S., Kim, J., Kim, G., Kang, H., Kim, M. S., ... & Kim, S. (2010). Multifunctional silver?embedded magnetic nanoparticles as SERS nanoprobes and their applications. small, 6(1), 119-125.

Jung, J. H., Oh, H. C., Noh, H. S., Ji, J. H., & Kim, S. S. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of aerosol science, 37(12), 1662-1670.

Kabashin, A. V., & Meunier, M. (2003). Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. Journal of Applied Physics, 94(12), 7941-7943.??

Kawasaki, M., & Nishimura, N. (2006). 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Applied Surface Science, 253(4), 2208-2216.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.

Khleifat, K., & Abboud, M. M. (2003). Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and ??amylase activity in transformed Enterobacter aerogenes. Journal of applied microbiology, 94(6), 1052-1058.

Khleifat, K. M. (2006). Correlation Between Bacterial Hemoglobin and Carbon Sources: Their Effect on Copper Uptake by Transformed E. coli Strain ?DH5. Current microbiology, 52(1), 64-68.

Khlaifat, A. M., Al-limoun, M. O., Khleifat, K. M., Al Tarawneh, A. A., Qaralleh, H., Abu Rayyan, E., & Alsharafa, K. Y. (2019). Antibacterial synergy of Tritirachium oryzae-produced silver nanoparticles with different antibiotics and essential oils derived from Cupressus sempervirens and Asteriscus graveolens (Forssk). Tropical Journal Of Pharmaceutical Research, 18(12), 2605-2616.

Khleifat, K. M., Nawayseh, K., Adjeroud, N. R., Khlaifat, A. M., Aljundi, I. H., & Tarawneh, K. A. (2009). Cadmium-resistance plasmid affected Cd+ 2 uptake more than Cd+ 2 adsorption in Klebsiella oxytoca. Bioremediation journal, 13(4), 159-170.

Khleifat, K. M., Abboud, M., Laymun, M., Al-Sharafa, K., & Tarawneh, K. (2006). Effect of variation in copper sources and growth conditions on the copper uptake by bacterial hemoglobin gene (vgb) bearing E. coli. Pakistan Jounal of Biology Science, 9(11), 2022-2031.

Khleifat, K. M., Abboud, M. M., Al-Mustafa, A. H., & Al-Sharafa, K. Y. (2006). Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of ?-galactosidase in Enterobacter aerogenes. Current microbiology, 53(4), 277.

Khleifat, K. M., Matar, S. A., Jaafreh, M., Qaralleh, H., Al-limoun, M. O., & Alsharafa, K. Y. (2019). Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. Journal of Essential Oil Bearing Plants, 22(2), 356-367.

Kim, S., Yoo, B. K., Chun, K., Kang, W., Choo, J., Gong, M. S., & Joo, S. W. (2005). Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. Journal of Molecular Catalysis A: Chemical, 226(2), 231-234.

Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614.?

Lara, H. H., Ayala-Nuñez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of nanobiotechnology, 8(1), 1-10.

Lara, H. H., Garza-Treviño, E. N., Ixtepan-Turrent, L., & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of nanobiotechnology, 9(1), 30.

Link, S., Burda, C., Nikoobakht, B., & El-Sayed, M. A. (2000). Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. The Journal of Physical Chemistry B, 104(26), 6152-6163.

Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., ... & Che, C. M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral therapy, 13(2), 253.

Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T., & Sawabe, H. (2001). Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. The Journal of Physical Chemistry B, 105(22), 5114-5120.

Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T., & Sawabe, H. (2000). Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. The Journal of Physical Chemistry B, 104(35), 8333-8337.

Magnusson, M. H., Deppert, K., Malm, J. O., Bovin, J. O., & Samuelson, L. (1999). Gold nanoparticles: production, reshaping, and thermal charging. Journal of Nanoparticle Research, 1(2), 243-251.

Mehrbod, P., Motamed, N., Tabaein, M., Solymani, E. R., Amini, E., Shahidi, M., & Khayri, M. (2009). IN vitro antiviral effect OF "NANOSILVER" on Influanza virus. Daru Journal of pharmaceutical science 17, (2) 88-93.

Montes-Burgos, I., Walczyk, D., Hole, P., Smith, J., Lynch, I., & Dawson, K. (2010). Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research, 12(1), 47-53.

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346..

Nahrendorf, M., Zhang, H., Hembrador, S., Panizzi, P., Sosnovik, D. E., Aikawa, E., ... & Weissleder, R. (2008). Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation, 117(3), 379-387.?

Navya, P. N., & Daima, H. K. (2016). Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 3(1), 1.

Nguyen, H. L., Nguyen, H. N., Nguyen, H. H., Luu, M. Q., & Nguyen, M. H. (2014). Nanoparticles: synthesis and applications in life science and environmental technology. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(1), 015008.

Panyala, N. R., Peña-Méndez, E. M., & Havel, J. (2008). Silver or silver nanoparticles: a hazardous threat to the environment and human health?. Journal of applied biomedicine, 6(3).

Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295-2350.

Qaralleh, H., Khleifat, K. M., Al-Limoun, M. O., Alzedaneen, F. Y., & Al-Tawarah, N. (2019). Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025016.

Sakamoto, M., Fujistuka, M., & Majima, T. (2009). Light as a construction tool of metal nanoparticles: Synthesis and mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 33-56.

Salem, H. F., Kam, E., & Sharaf, M. A. (2011). Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. International Journal of Drug Delivery, 3(2), 293.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.

Shanmukh, S., Jones, L., Driskell, J., Zhao, Y., Dluhy, R., & Tripp, R. A. (2006). Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano letters, 6(11), 2630-2636.

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.

Song, H. Y., Ko, K. K., Oh, L. H., & Lee, B. T. (2006). Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur Cells Mater, 11(Suppl 1), 58.

Sun, R. W. Y., Chen, R., Chung, N. P. Y., Ho, C. M., Lin, C. L. S., & Che, C. M. (2005). Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chemical communications, (40), 5059-5061.

Sylvestre, J. P., Kabashin, A. V., Sacher, E., Meunier, M., & Luong, J. H. (2004). Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. Journal of the American Chemical Society, 126(23), 7176-7177.?

Tarasenko, N. V., Butsen, A. V., Nevar, E. A., & Savastenko, N. A. (2006). Synthesis of nanosized particles during laser ablation of gold in water. Applied surface science, 252(13), 4439-4444.

Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the total environment, 408(5), 999-1006.

Tsuji, T., Iryo, K., Watanabe, N., & Tsuji, M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, 202(1-2), 80-85.

Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J., 1(1), 65-79.

White, T. C., Holleman, S., Dy, F., Mirels, L. F., & Stevens, D. A. (2002). Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial agents and chemotherapy, 46(6), 1704-1713.?

Wiley, B., Sun, Y., Mayers, B., & Xia, Y. (2005). Shape?controlled synthesis of metal nanostructures: the case of silver. Chemistry–A European Journal, 11(2), 454-463.

Wilson, N. (2018). Nanoparticles: Environmental Problems or Problem Solvers?.BioScience, 68(4), 241-246

Zeidan, R., Oran, S., Khleifat, K., & Matar, S. (2013). Antimicrobial activity of leaf and fruit extracts of Jordanian Rubus sanguineus Friv.(Rosaceae). African Journal of Microbiology Research, 7(44), 5114-5118.

Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 17(9), 1534