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INTRODUCTION  

Biofilms consist of interconnected colonies of bacteria bound in 
self-excreted matrix known as an extracellular polymeric 

substance. (EPS) (Vani et al., 2023). These structures aggregate 

and adhere to the surfaces of medical devices, industrial 
equipment, and host tissues (such as teeth, gums, wounds, 

sinuses, bladder, and airways). They interfere with host 

mechanisms, resulting in health and environmental 
complications (Shineh et al., 2023). Biofilm producing bacteria 

are major contributors in the development of chronic infection, 

persistent contamination, and antibiotic resistant (Assefa & 
Amare, 2022; Dutt et al., 2022). 

The common widespread Gram-negative bacterium 

Pseudomonas aeruginosa is well-known for its considerable 
biofilm-forming capacity and built-in antibiotic resistance., both 

of which provide serious difficulties in therapeutic settings 

(Verdial et al., 2023). P. aeruginosa biofilms may contribute to 
persistent infections, which are challenging  to treat (He et al., 

2023). These biofilms have been linked to a variety of diseases, 
such as but not limited to  those that impact the urinary tract, 

respiratory system, and wounds (Sathe et al., 2023). These 

infections are more common in immunocompromised people 
and cystic fibrosis pateints (Oves et al., 2024). 

A number of biofilm-associated antimicrobial resistance 

mechanisms, such as decreased antibiotic penetration, changed 
biofilm cell metabolic activity, and persisted cell presence, make 

the conventional antibiotic-based treatment strategy for P. 

aeruginosa infections frequently ineffective (Shrestha et al., 
2022). As a result, there is increased focus on creating 

therapeutic agents that specifically prevent the production of 

biofilms, disrupts already-formed biofilms, or improve the 
current therapies efficiency (Shrestha et al., 2022). 

Research attention have been directed more toward the 

development of antibiofilm agents in recent years (Damyanova 
et al., 2024). These agents are intended to disrupt established 

biofilms, prevent biofilm formation, or increase the 

susceptibility of bacteria associated with biofilms to commonly 
used antibiotics (Kumar et al., 2023). In recent years, the focus 

on developing antibiofilm agents has been supported by 

advancements in several scientific fields, such as screening 
techniques, molecular biology, and synthetic chemistry (Moreno 

Osorio et al., 2021). 

The objective of this review is to assess conventional methods 

for identifying antibiofilm agents targeting P. aeruginosa. It 
examines the strengths and limitations of these approaches and 

explores potential future research directions. By summarizing 

current knowledge and recent advancements, it may support the 
development of more effective strategies for combating P. 

aeruginosa biofilm-related infections. Overcoming the 

challenges posed by these biofilms is essential for improving 
therapeutic outcomes and advancing our understanding of 

biofilm biology and antibiotic resistance. 

 

QUORUM SENSING IN P. aeruginosa  

P. aeruginosa utilizes multiple quorum sensing (QS) systems to 

regulate gene expression in response to bacterial population 
density (Smalley et al., 2022). The primary QS systems in P. 

aeruginosa are the Las, Rhl, and Pqs systems (Soto-Aceves et 

al., 2021). The Las system is one of the most extensively studied 
quorum sensing systems. It involves the signaling molecule N-

(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL), 
which acts as an autoinducer. The system includes LasI, an 

enzyme responsible for synthesizing 3-oxo-C12-HSL, and LasR, 

a receptor protein that binds to this autoinducer to regulate gene 
expression. The LasR-3-oxo-C12-HSL complex activates 

transcription of target genes involved in virulence and biofilm 

formation (Y. Wang et al., 2022). The Rhl system utilizes the AI 
N-butyryl-L-homoserine lactone (C4-HSL). RhlI produces C4-

HSL, and RhlR is the receptor that, upon binding to C4-HSL, 

regulates genes crucial for producing rhamnolipids and other 
factors that contribute to biofilm structure and function (J. Li & 

Zhao, 2020) (Duplantier et al., 2021). The Pqs system is distinct 

in that it uses the signaling molecule Pseudomonas quinolone 
signal (PQS) and its precursors (García-Reyes et al., 2020). 

PqsABCD is involved in PQS biosynthesis, while PqsR (MvfR) 

is the receptor that mediates the effects of PQS. This system 
regulates a separate set of genes associated with virulence, 

biofilm maintenance, and secondary metabolism (Groleau et al., 

2020). 
 P. aeruginosa, quorum sensing is a density-dependent 

regulatory system that orchestrates bacterial behavior through 

the production and detection of AIs (Simanek & Paczkowski, 
2022). As the bacterial population density increases, the 

concentration of AIs rises (Eickhoff et al., 2022). These 
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signaling molecules diffuse freely across the bacterial cell 
membrane and accumulate in the extracellular environment 

(Salman et al., 2023). Once the concentration of AIs reaches a 

threshold level, they bind to specific intracellular receptors, such 
as LasR and RhlR (Coquant et al., 2020). This receptor-ligand 

binding activates transcriptional regulators that initiate the 

expression of genes involved in various processes, including 
biofilm formation (Zhou et al., 2020; Shao et al., 2020). By 

coordinating the production of extracellular polymeric 

substances (EPS) and other biofilm-related factors, quorum 
sensing ensures that the bacteria form robust biofilms at high 

cell densities, enhancing their ability to adhere to surfaces, resist 

environmental stresses, and evade antimicrobial treatments 
(Singh et al., 2021). 

P. aeruginosa BIOFILM FORMATION 

The formation of biofilms proceeds through a highly regulated 

process involving distinct stages: initial attachment, 

microcolony formation, maturation, and dispersion (Figure 2) 
(Haidar et al., 2024). At each stage, bacterial cells undergo 

phenotypic changes facilitated by QS systems, small regulatory 

molecules, and environmental cues (Ostovar & Boedicker, 
2024). QS enables P. aeruginosa to synchronize gene 

expression within the biofilm, regulating virulence factors, EPS 

production, and antibiotic tolerance (Hemmati et al., 2024; 
Juszczuk-Kubiak, 2024). The stages of biofilm formation, along 

with the factors, structures, and conditions that facilitate each 

phase, are detailed in Table 1.  
 

 
Figure 1: Mechanisms of quorum sensing: from autoinducer accumulation to gene expression 

 

 
Figure 2: Stages of biofilm formation  
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Stage I: Initial Attachment 

Biofilm formation begins with the initial attachment of 

planktonic (free-floating) bacterial cells to  surfaces (Sharma et 

al., 2023). This crucial step marks the onset of biofilm 
development and sets the stage for subsequent stages 

(Aboelnaga et al., 2024). The gene regulation during the initial 

attachment stage of P. aeruginosa biofilm formation is regulated 
by a sophisticated network of regulatory pathways (Bai et al., 

2021). QS systems (Las and Rhl), type IV pili (Tfp), twitching 

motility, EPS production pathways, and environmental 
adaptation mechanisms collectively control the expression of 

genes involved in adhesion, colonization, and biofilm initiation 

(Kuchma & O Toole, 2022; Poulin & Kuperman, 2021; Ruhal & 
Kataria, 2021; Sırıken et al., 2021). Several key factors 

influencing this stage include surface sensing and adhesion, 

motility, physiological changes, reversible and irreversible 
attachment, and environmental influences.  

 

A. Surface Sensing and Adhesion: Upon encountering a 
suitable surface, P. aeruginosa cells undergo a series of 

biochemical and physiological changes to initiate attachment 

(Jones et al., 2022). Surface sensing involves the recognition of 
physical and chemical properties, such as surface topography, 

hydrophobicity, and availability of binding sites (Lee et al., 

2021). The bacterium utilizes specialized surface appendages 
and adhesins, such as type IV pili and adhesins like lectins and 

polysaccharides, to adhere to the surface (Guo et al., 2021; 

Kreve & Dos Reis, 2021; Whitfield & Brun, 2024). 
 

B. Motility: P. aeruginosa known for its ability to use 

swimming, swarming, and twitching motilities (Ma et al., 2022). 
Swimming motility, mediated by flagella, helps planktonic cells 

reach and attach to surfaces (Zegad o et al., 2023). Once 
attached, twitching motility enables cells to crawl and aggregate, 

forming microcolonies (Carabelli et al., 2020). Twitching 

motility aids in exploring and colonizing surfaces (Ligthart et 
al., 2020), while swarming motility facilitates rapid surface 

coverage and expansion of biofilm communities (Worlitzer et 

al., 2022). These motilities contribute to the structural 
organization of biofilms, including initial attachment, 

microcolony formation, and the establishment of mature biofilm 

architecture (Guzm n-Soto et al., 2021). 
Type IV pili, composed of pilin subunits, play a crucial role in 

initial attachment by mediating reversible adhesion to surfaces 

through retractile and twitching motility mechanisms (David et 
al., 2024; Neuhaus et al., 2020). These pili facilitate surface 

exploration and engagement, enhancing the likelihood of stable 

attachment (Mohamad et al., 2023).  
 

C. Physiological Changes: During initial attachment, P. 

aeruginosa cells undergo physiological changes that optimize 

their adherence and prepare them for subsequent stages of 
biofilm development (Vetrivel et al., 2021). These changes may 

include alterations in gene expression patterns, metabolic shifts, 

and the synthesis of extracellular matrix components (Su et al., 
2022). For instance, upregulation of genes involved in adhesion 

and initial colonization is often observed, ensuring robust 

attachment to the surface (P. Li et al., 2023). 
 

D. Reversible and Irreversible Attachment: Initial attachment 

is typically reversible, allowing bacterial cells to explore 
multiple surfaces and optimize their positioning before 

committing to irreversible attachment and subsequent biofilm 

development (Sharma et al., 2023). This reversible attachment 
phase is crucial for biofilm initiation and enables P. aeruginosa 

to adapt to varying environmental conditions and surface 

properties (R. Yin et al., 2022). 
 

E. Environmental Influences: Environmental factors such as 

nutrient availability, pH, temperature, and the presence of other 
microorganisms can influence the initial attachment process (X. 

Wang et al., 2023). P. aeruginosa has a remarkable ability to 

adapt to diverse environmental conditions, allowing it to 
colonize a wide range of surfaces and environments (Benigno et 

al., 2023). 

 

Stage II: Microcolony Formation 

After the initial attachment of planktonic cells to a surface, P. 

aeruginosa progresses to microcolony formation (Sarkar, 2020). 
This stage is characterized by the aggregation and clustering of 

attached bacterial cells into small, densely packed clusters 

known as microcolonies (Luo et al., 2022). Microcolony 
formation is a critical step in biofilm development, serving as a 

foundation for the subsequent stages of biofilm maturation and 
scaffolding (Alotaibi & Bukhari, 2021). Key factors influencing 

microcolony development include aggregation and QS, EPS 

production and biofilm matrix formation, and spatial 
organization and nutrient acquisition. These factors collectively 

impact the growth and structure of microcolonies, shaping the 

overall biofilm architecture. 
 

A. Aggregation and Quorum Sensing 

P. aeruginosa utilizes QS systems to coordinate the aggregation 
of cells into microcolonies (X. Liu et al., 2023). QS involves the 

production and sensing of signaling molecules (such as N-acyl 

homoserine lactones (AHLs) in the Las and Rhl systems), which 
accumulate as the bacterial population density increases (García-

Reyes et al., 2020). QS systems regulate the expression of genes 

involved in cell-cell communication, EPS production, and 
biofilm maturation, all of which are crucial for microcolony 

formation (P. Li et al., 2023). 

 
Table 1: Pseudomonas aeruginosa biofilm formation stages, including factors, structures, and conditions that facilitate each stage. 

Stage  Factors and Structures Conditions and Facilitators References  

Stage 1: Initial 

Attachment 

- Surface Sensing and Adhesion - Surface topography, hydrophobicity, availability of binding 

sites 

(Schwibbert et al., 2024) 

 - Motility and Adhesins (Type IV pili, 

twitching motility) 

- Flagella-mediated swimming motility, twitching motility 

for surface exploration 

(Cont et al., 2023; Pfeifer et al., 2022) 

 - Physiological Changes - Gene regulation (Quorum sensing systems: Las and Rhl), 

metabolic shifts, EPS production pathways 

(Vetrivel et al., 2021) 

 - Reversible and Irreversible Attachment  - Ability to explore surfaces before irreversible attachment (Uneputty et al., 2022) 

 - Environmental Influences - Nutrient availability, pH, temperature, presence of other 

microorganisms  

(Scribani Rossi et al., 2022) 

Stage 2: Microcolony 

Formation 

- Aggregation and Quorum Sensing                               - QS signaling molecules (N-acyl homoserine lactones 

(AHLs)), cell density 

(David et al., 2024) 

 - EPS Production and Biofilm Matrix - Polysaccharides (alginate, Pel), proteins, DNA; regulated 

by AlgZR, Pel systems 

(Sultan et al., 2021) (R. Li et al., 2024) 

 - Spatial Organization and Nutrient 

Acquisition 

- Heterogeneous patterns, nutrient gradients, oxygen 

availability 

(Pai et al., 2023) 

Stage 3: Maturation 

and Stability 

- EPS Production and Biofilm Architecture - Alginate, Pel, Psl polysaccharides, extracellular DNA and 

proteins 

(Le Mauff et al., 2022)(Singh et al., 

2021) 

 - Three-Dimensional Structure - Channels, water channels for nutrient and waste exchange (Uneputty et al., 2022) 

 - Metabolic Activity and Phenotypic 

Heterogeneity 

- Differential gene expression, metabolic adaptation (Vohra et al., 2023) 

Stage 4: Dispersion         - Triggering Factors - Environmental cues (oxygen levels, nutrient depletion), 

signaling molecules 

(Rumbaugh & Sauer, 2020) 

 - Regulatory Mechanisms (Quorum Sensing) - Las and Rhl systems, accumulation of QS signals (Ambreetha & Singh, 2023) 

 - Dispersal Strategies  - Enzymatic degradation (proteases, nucleases), surfactant 

production (rhamnolipids) 

(Cherny & Sauer, 2020)(Carrazco-

Palafox et al., 2021) 

 - Physiological Changes - Metabolic shifts for planktonic survival   (Thi et al., 2020) 
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B. Extracellular Polymeric Substances (EPS) Production 

and Biofilm Matrix 

During microcolony formation, P. aeruginosa synthesizes and 

secretes EPS, which contribute to the structural integrity and 
matrix of the biofilm (Y. Li et al., 2021). EPS components 

include polysaccharides (e.g., alginate and Pel), proteins, and 

DNA, which together form a hydrated matrix that encases 
bacterial cells within the microcolony (Chung et al., 2023; 

Karygianni et al., 2020). EPS production is regulated by various 

genetic pathways, such as the AlgZR and Pel systems, which 
respond to environmental influence and QS signals to coordinate 

matrix synthesis and biofilm development (Sultan et al., 2021). 

 

C. Spatial Organization and Nutrient Acquisition 

Microcolonies exhibit spatial organization characterized by 

heterogeneous patterns of bacterial cells within the biofilm 
(Shree et al., 2023). This organization allows for nutrient 

gradients, oxygen gradients, and metabolic diversity, which 

support the growth and persistence of P. aeruginosa within the 
biofilm community (David et al., 2024; Tuon et al., 2022). Cells 

within microcolonies may display phenotypic heterogeneity, 

including differences in gene expression profiles and 
physiological states, contributing to biofilm resilience and 

adaptability (Ugolini et al., 2024). 

 

Stage III: Maturation and Stability 

As microcolonies mature, the biofilm architecture becomes more 

complex, with the formation of channels and water channels that 
facilitate nutrient and waste exchange (P. Li et al., 2023; Verma 

et al., 2023). Maturation involves continued EPS production, 

cell-cell interactions, and the recruitment of additional bacterial 
cells to the growing biofilm community (Sharma et al., 2023). 

This stage is essential for biofilm stability ,resistance to 
environmental stresses and antimicrobial agents (Grooters et al., 

2024). Key factors influencing this stage include:  

 

A. EPS Production and Biofilm Architecture 

EPS production continues to be a critical aspect of biofilm 

maturation (Grooters et al., 2024). P. aeruginosa synthesizes 
and secretes EPS components such as alginate, Pel, and Psl 

polysaccharides, as well as extracellular DNA (eDNA) and 

proteins (Sarkar, 2020). EPS components contribute to the 
structural integrity of the biofilm matrix, forming a hydrated and 

protective environment that encases bacterial cells within the 

biofilm community (Bano et al., 2023; Gerardi et al., 2024). 
This matrix facilitates nutrient and waste exchange and protects 

against host immune responses and antimicrobial agents 

(Erkihun et al., 2024). 
 

B. Three-Dimensional Structure 

During maturation, P. aeruginosa biofilms develop a three-
dimensional architecture characterized by complex 

arrangements of microcolonies, channels, and water channels 

(X. Wang et al., 2023). These structures allow for spatial 
organization, nutrient gradients, and oxygen availability within 

the biofilm community (Polizzi et al., 2022). Channels and 

water channels facilitate the flow of nutrients and metabolic 
waste products throughout the biofilm, supporting the growth 

and metabolic activity of bacterial cells within different regions 

of the biofilm (Quan et al., 2022). 

 

C. Metabolic Activity and Phenotypic Heterogeneity 

P. aeruginosa cells within mature biofilms exhibit metabolic 
adaptation and phenotypic heterogeneity. This includes 

variations in gene expression profiles, physiological states, and 

metabolic activities, which contribute to biofilm resilience and 
adaptability (Ugolini et al., 2024). Differential gene expression 

regulates metabolic pathways involved in energy production, 

nutrient acquisition, and stress responses, allowing P. 
aeruginosa to thrive in diverse environmental conditions 

encountered within the biofilm (Munir et al., 2020). 

 

Stage IV: Dispersion 

Dispersion is the process by which bacterial cells detach from 

the mature biofilm and return to a planktonic (free-floating) 
state. This stage is crucial for P. aeruginosa biofilms as it allows 

bacteria to disseminate, colonize new environments, and initiate 
new infections (Mancuso et al., 2024). Dispersion involves 

coordinated regulatory mechanisms that facilitate the release of 

bacterial cells from the biofilm matrix and their transition back 
to a planktonic lifestyle (Mukherjee et al., 2023). 

 

A. Triggering Factors 

Dispersion is triggered by environmental cues and signals that 

indicate changes in nutrient availability, stress conditions, or the 

need to colonize new surfaces or host tissues. These cues can 
include fluctuations in oxygen levels, nutrient depletion, or the 

presence of signaling molecules that regulate biofilm dispersal 

(Rumbaugh & Sauer, 2020). 
 

B. Regulatory Mechanisms 

P. aeruginosa utilizes QS systems, such as the Las and Rhl 
systems which regulate biofilm dispersion (Ju kov et al., 2023; 

D. Tang et al., 2024). QS signals accumulate within the biofilm 

as the bacterial population density increases, triggering the 
expression of genes involved in dispersion and planktonic 

growth (Juszczuk-Kubiak, 2024). QS systems control the 

production of dispersal factors, including enzymes and 
surfactants, that degrade the biofilm matrix and facilitate the 

release of bacterial cells (Borges et al., 2020; H. Wang et al., 

2022). 
 

C. Dispersal Strategies 

1. Enzymatic Degradation: P. aeruginosa produces enzymes 
such as proteases and nucleases that degrade the EPS matrix and 

disrupts the structural integrity of the biofilm (Chaphalkar, 

2023). This enzymatic activity promotes the dispersal of 
bacterial cells by breaking down the bonds that anchor cells to 

the biofilm matrix (Jiang et al., 2020). 
2. Surfactant Production: Surfactants, such as rhamnolipids, 

are produced by P. aeruginosa during biofilm dispersion 

(Brindhadevi et al., 2020). These molecules reduce surface 
tension and facilitate the detachment of bacterial cells from the 

biofilm, promoting their release into the surrounding 

environment (Carrazco-Palafox et al., 2021). 
 

D. Physiological Changes: Upon dispersal, P. aeruginosa cells 

undergo metabolic shifts to adapt to the planktonic lifestyle 
(Zemke et al., 2020). This includes changes in gene expression 

and metabolic pathways to support individual survival and 

growth in the new environment (David et al., 2024). 

 

MOLECULAR REGULATION OF Pseudomonas 

aeruginosa BIOFILM FORMATION 

P. aeruginosa biofilm formation is tightly regulated by a 

network of genes and signaling pathways that coordinate each 

stage of the biofilm lifecycle (S. Park & Sauer, 2021). These 
regulatory mechanisms ensure the adaptability, resilience, and 

pathogenic potential of P. aeruginosa biofilms in diverse 

environments and clinical contexts (Ugolini et al., 2024). 
 

A. Initial Attachment: 

The initial attachment phase in bacterial biofilm formation 
involves several key mechanisms. Type IV Pili and adhesins 

play essential roles, with PilA (Pilin) and PilB encoding the 

major pilin subunit and assembly proteins responsible for 

twitching motility and initial surface attachment (T. Zhang et al., 

2023). Additionally, CdrA, an adhesin protein promotes 

adherence to both abiotic surfaces and host cells, facilitating 
initial attachment processes (Jacobs et al., 2022; Singh et al., 

2021). Motility is governed by genes such as Flh(A-D) and 

Fli(D-T, Y, Z), which regulates the flagellar apparatus by 
encoding structural proteins like flagellin (FliC), motor proteins, 

and regulatory factors crucial for bacterial movement. FlhDC 

acts as a master regulator controlling the expression of these 
flagellar genes in response to environmental signals (G. Sun et 

al., 2023; H. Sun et al., 2022).  

QS systems, including LasR-LasI and RhlR-RhlI, regulate the 
production of QS signal molecules such as N-acyl homoserine 

lactones (AHLs), influencing genes pivotal for initial attachment 

and early biofilm formation (Kanojiya et al., 2022; Sırıken et al., 
2021). The rhlAB genes participate in rhamnolipid synthesis, 
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which reduces surface tension and facilitates swarming motility 
(Lavanya, 2024). Moreover, EPS production is governed by Pel 

and Psl biosynthesis genes, which synthesize extracellular 

polysaccharides (Pel and Psl) needed for biofilm matrix 
formation and enhancing initial surface attachment (Pezzoni et 

al., 2020; Soleymani-Fard et al., 2024). These mechanisms 

collectively contribute to the intricate process of bacterial 
biofilm initiation and development (Asma et al., 2022). 

 

B. Microcolony Formation: 

Microcolony formation during bacterial biofilm development 

involves intricate regulatory mechanisms. QS and biofilm 

formation genes, such as LasR and RhlR targets, play crucial 
roles in orchestrating this process (Pugazhendhi et al., 2022). 

They regulate the expression of genes essential for microcolony 

formation, including those responsible for EPS production 
(algD, pelA, and pslA), surface adhesion (cupA1 and cupA2), 

and aggregation (fimU) (Hasan Kashkool & Al-Muhanna, 2020; 

Hern ndez-S nchez et al., 2024; Yam et al., 2022). Additionally, 
small RNA regulators like RsmA and RsmZ exert control over 

genes involved in biofilm formation. These include motility-

related genes (fleQ) and EPS production genes (pel and psl), 
thereby influencing microcolony development and the overall 

structure of the biofilm (Condinho et al., 2023).  

 

C. Maturation: 

During the maturation phase of bacterial biofilm development, 

several key processes ensure stability, resilience, and adaptation 
(Y. Wang et al., 2024). The AlgZR system plays a pivotal role 

by regulating genes involved in alginate biosynthesis (algD and 

algC), which are crucial for the production of extracellular 
polysaccharides and the stabilization of the biofilm matrix 

(Pezzoni et al., 2022; Yam et al., 2022; Yeboah, 2021). 
Simultaneously, genes responsible for Pel and Psl synthesis 

remain actively expressed, reinforcing the biofilm matrix 

throughout maturation (Goel et al., 2021; Singh et al., 2021). 
This continuous synthesis contributes significantly to the 

architecture and resistance of the biofilm (Y. Li et al., 2020; 

Zhao et al., 2023). 
Furthermore, the cyclic-di-GMP signaling pathway plays a 

central role in coordinating the transition between planktonic 

and biofilm lifestyles. This signaling system influences EPS 
production, modulates motility, and enhances stress responses as 

the biofilm matures (Luo et al., 2022). Together, these 

mechanisms ensure the robustness and adaptability of the 
biofilm structure during its maturation phase, allowing bacterial 

communities to persist and thrive in diverse environmental 

conditions (Diggle & Whiteley, 2020). 
 

D. Dispersion: 

Biofilm dispersion, the process by which bacteria transition 
from a sessile biofilm state to a planktonic lifestyle, involves 

orchestrated genetic regulation and environmental cues 

(Penesyan et al., 2021). The LasR and RhlR regulators play 
crucial roles in this phase by activating dispersal genes such as 

rhlA and rhlB (Sánchez-Jiménez et al., 2023). These genes 

encode enzymes and surfactants, notably rhamnolipids, which 
facilitate the breakdown of the biofilm structure and promote 

dispersal into the surrounding environment (Lavanya, 2024). 

Additionally, environmental stress response genes are pivotal in 

triggering biofilm dispersal in response to various environmental 

cues, including nutrient depletion and fluctuating oxygen levels 

(P. Li et al., 2023). These genes enable bacteria to adapt and 
disperse from the biofilm in search of more favorable conditions 

(Luo et al., 2022). Together, these regulatory mechanisms and 

environmental responses ensure the dynamic balance between 
biofilm formation and dispersal, allowing bacteria to thrive and 

survive in diverse ecological niches (Abebe, 2020). 

 

METHODOLOGIES FOR EVALUATING ANTIBIOFILM 

ACTIVITY  

Evaluation of antibiofilm agents involves several crucial steps to 
assess their efficacy against bacterial biofilms. Initially, the 

antibacterial activity of potential agents is determined through 

methods such as broth microdilution to establish the minimum 

inhibitory concentration (MIC), indicating the lowest 
concentration that inhibits visible bacterial growth (Hossain, 

2024). Subsequently, the evaluation shifts to examining 

antibiofilm activity at sub-MICs, focusing on different stages of 
biofilm development: initial attachment, microcolony formation, 

maturation, and dispersion (Erkihun et al., 2024). Techniques 

like crystal violet staining, confocal laser scanning microscopy, 
and viability assays are employed to quantify biofilm biomass 

and assess the impact of agents on biofilm integrity and viability 

at each stage (Diouchi et al., 2024). Effective antibiofilm agents 
not only inhibit biofilm formation but also disrupt existing 

biofilms, making them critical candidates for combating 

persistent bacterial infections (Kang et al., 2023).  
 

A. Screening study 

1. Crystal Violet Assay  

The crystal violet assay is a widely employed method for 

quantifying biofilm biomass and evaluating the effectiveness of 

antibiofilm agents (Meneses et al., 2023). It operates on the 
principle of crystal violet dye binding to negatively charged 

components within the biofilm matrix, such as extracellular 

polysaccharides and proteins (Ramachandra et al., 2023). After 
incubation and subsequent washing to remove unbound dye, the 

bound dye is solubilized using solvents like ethanol or acetic 

acid, and its absorbance is measured spectrophotometrically at 
around 570 nm (Jha et al., 2023). This measurement correlates 

with the amount of biofilm biomass present, offering a semi-

quantitative assessment of biofilm formation (Diouchi et al., 
2024). The assay is valued for its simplicity, cost-effectiveness, 

and scalability, making it suitable for high-throughput screening 

in laboratory settings (Nilles et al., 2022). However, it does have 
limitations, including its lack of specificity in differentiating 

between live and dead cells within the biofilm and its inability to 
provide detailed structural information or spatial distribution of 

cells (Pisaruka, 2023). Researchers often complement the crystal 

violet assay with other techniques to gain a more comprehensive 
understanding of biofilm dynamics and the efficacy of 

antibiofilm treatments. 

 

2. Cell Viability Assay  

Cell viability assays are fundamental methods used to assess the 

number of viable (live) cells within a sample, crucial for 
evaluating the efficacy of antibiofilm agents (Di Bonaventura et 

al., 2023). It provides an indication about the antibiofilm activity 

rather than the bacteriostatic activity of the agent (Diouchi et al., 
2024). These assays typically rely on markers of cell membrane 

integrity or metabolic activity to distinguish live cells from dead 

ones (Cai et al., 2024). For instance, fluorescent dyes like 
fluorescein diacetate (FDA) or calcein-AM penetrate live cells 

and produce fluorescence upon cleavage by intracellular 

esterases, indicating cell viability (Elisabeth et al., 2021). 
Alternatively, assays such as the XTT (2,3-bis(2-methoxy-4-

nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay 

measure metabolic activity through the reduction of tetrazolium 
salts by mitochondrial enzymes in viable cells (Elisabeth et al., 

2021). The advantages of cell viability assays include their 

quantitative nature, allowing for precise comparisons between 
different treatments or experimental conditions (Larsson et al., 

2020; Mikheeva et al., 2024). They are also highly sensitive, 

capable of detecting subtle changes in cell viability (Robinson et 

al., 2023). Moreover, these assays are adaptable to various cell 

types and can be applied to both planktonic and biofilm-

associated cells (Dong et al., 2020). However, limitations 
include potential interference from dead cells that may retain 

some metabolic activity, as well as the complexity and cost 

associated with certain assay formats (Kamiloglu et al., 2020). 
Variability in experimental conditions such as incubation time 

and temperature can also impact assay results, requiring careful 

consideration in experimental design and interpretation (Larsson 
et al., 2020). Despite these challenges, cell viability assays 

remain indispensable tools in biomedical and microbiological 

research for assessing cellular health and response to treatments 
(Khalef et al., 2024). 
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Table 2: the key genes involved in P. aeruginosa biofilm formation stages, and their functions.  

Stage Gene(s) Function Reference(s) 

Initial attachment PilA (Pilin) Major pilin subunit involved in type IV pili assembly (Shanmugasundarasamy et al., 2022) 

 PilB Pilus assembly protein (Dye & Yang, 2020) 

 PilY1, PilY2 Adhesion and twitching motility (Sultan et al., 2021) 

 Flh(A-D) Flagellar protein export apparatus (Halte & Erhardt, 2021) 

 FliE-FliR Flagellar motor proteins and assembly factors (Halte & Erhardt, 2021) 

 FlhDC Master regulator of flagellar gene expression (Nedeljkovi et al., 2021)      

 CdrA Adhesin protein promoting adherence to surfaces (Nedeljkovi et al., 2021; Singh et al., 2021) 

 rhlAB Rhamnolipid biosynthesis (surfactant production)  (Albasri et al., 2024) 

 LasR-LasI 

RhlR-RhlI 

QS system regulating AHL production and adhesion genes (Bernabè et al., 2022) 

 FleQ Global regulator of flagellar and exopolysaccharide biosynthesis (Dardis et al., 2021; Oladosu et al., 2024) 

 Pel and Psl Genes involved in EPS production and biofilm matrix formation (Balducci et al., 2023; Feng et al., 2020; Grossich et al., 

2023) 

Microcolony Formation LasR and RhlR Regulate genes for EPS production (algD, pelA, pslA), adhesion 

(cupA1, cupA2), and aggregation (fimU) 

(Elnegery et al., 2021) 

 RsmA and 

RsmZ 

Small RNAs regulating motility (fleQ) and EPS production (pel, 

psl) 

(Sánchez-Jiménez et al., 2023) 

Maturation AlgZR System Regulates alginate biosynthesis genes (algD, algC) (Pezzoni et al., 2022; Yeboah, 2021) 

 Pel and Psl Continuously expressed genes for EPS synthesis and biofilm matrix 

reinforcement 

(M. Tang et al., 2024) 

 Cyclic-di-GMP 

Signaling 

Controls EPS production, motility, and stress responses (Krol et al., 2020) 

Dispersion LasR and RhlR 

Regulation 

Activates dispersal genes (e.g., rhlA, rhlB) for enzymes and 

surfactants (e.g., rhamnolipids) 

(Castro et al., 2022) 

 

 
Table 3: Microscopy techniques used for biofilm visualization, along with their advantages and disadvantages: 

Microscopy 

Technique 

Advantages Disadvantages References  

Brightfield 

Microscopy 

- Simple and widely available.  

- Provides general observation of biofilm morphology. 

- Shows the general aggregation of cells within a biofilm. 

- Requires minimal sample preparation. 

- Limited contrast, especially for transparent biofilm 

components like EPS. 

- Cannot differentiate live vs. dead cells without staining 

(Futo et al., 2022; Kozlova et 

al., 2020; Y. Liu et al., 2022) 

Phase-Contrast 

Microscopy 

- Enhances contrast of transparent structures (e.g., EPS) 

without staining. 

- It can give a 2D representation of the biofilm structure, 

showing surface features and some spatial organization 

- Allows for visualization of live biofilm samples. 

- Limited to contrast enhancement and does not provide 

detailed structural information. 

(Yuan et al., 2020) 

Differential  

Interference 

Contrast (DIC) 

Microscopy 

- Provides 3D-like images with enhanced depth perception. 

- High resolution and detailed visualization of biofilm 

architecture. 

- Requires skilled operation and calibration. 

- Can be costly to implement and maintain. 

(Han et al., 2023) 

Fluorescence 

Microscopy 

- Enables specific labeling and visualization of biofilm 

components using fluorescent dyes or proteins. 

- Allows for quantitative analysis of biomolecules. 

- Requires fluorescent labeling, which can alter biofilm 

dynamics. 

- High cost of fluorescent probes and equipment. 

(Guéneau et al., 2023; Panda 

et al., 2021) 

Confocal Laser 

Scanning 

Microscopy 

(CLSM) 

- Provides high-resolution, 3D imaging of biofilms. 

- Allows for real-time observation and dynamic imaging. 

- Penetrates thick biofilms for detailed analysis. 

- Expensive equipment and maintenance. 

- Requires expertise in operation and data analysis. 

- Depth limitations in thick biofilms. 

(Albalawi, 2024; Elliott, 

2020; Mhade & Kaushik, 

2023)  

Scanning 

Electron 

Microscopy 

(SEM) 

- Provides high-resolution images (down to nanometer 

scale), revealing detailed surface structures and topography 

of biofilms. 

- Facilitates elemental analysis using backscattered electrons 

(BSE) 

- Requires meticulous sample preparation, including 

dehydration and coating.  

- High initial cost of equipment and ongoing maintenance. 

- Complex operation and interpretation, necessitating trained 

personnel. 

- Limited depth of field, making it challenging to image 

entire biofilm thicknesses in focus without specialized 

techniques. 

(Y. Huang et al., 2020; Silva 

et al., 2021)  

 

3. Microscopic visualization of biofilm 

Visualizing biofilms using microscopy techniques is essential 

for gaining detailed insights into their structural organization, 
composition, and dynamics (Table 3). Optical microscopy 

methods such as brightfield, phase-contrast, and differential 

interference contrast (DIC) microscopy operate on the principle 
of visible light absorption, refraction, and interference, 

respectively, to visualize biofilms (Dubay et al., 2023). 

Brightfield microscopy provides contrast between biofilm 
components based on light absorption by cells and extracellular 

matrix (ECM), offering a straightforward observation method 

(Clapperton et al., 2024). Phase-contrast microscopy enhances 
contrast by detecting differences in refractive indices within the 

biofilm, making transparent structures like EPS more visible 

without the need for staining (Albalawi, 2024). DIC microscopy 
further improves visualization by detecting differences in optical 

path length, producing 3D-like images that highlight biofilm 

architecture and cell arrangements (Han et al., 2023). 
Fluorescence microscopy extends visualization capabilities by 

using fluorescent dyes or genetically encoded fluorescent 

proteins (e.g., Green Fluorescent Protein) to selectively label 
biofilm components (Hickey et al., 2021). This technique allows 

researchers to track specific biomolecules, such as cells or 

extracellular matrix materials, within the biofilm matrix 
(Blanco-Romero et al., 2024). Confocal laser scanning 

microscopy (CLSM), a powerful tool in biofilm research, 

combines fluorescence microscopy with laser scanning 
technology to generate high-resolution, three-dimensional 

images of biofilms (Gerardi et al., 2024). CLSM can penetrate 

thick biofilms and provide detailed spatial information on 

biofilm structure, cell distribution, and viability in real-time 

(Waqas et al., 2023). 
Scanning Electron Microscopy (SEM) is a sophisticated imaging 

technique widely utilized in biofilm research for its ability to 

provide detailed, high-resolution images of surface structures 
(A. Ali et al., 2023). SEM imaging reveals topographical details 

of biofilm surfaces, offering insights into the arrangement of 

cells, EPS, and other surface features (Cleaver & Garnett, 2023). 
Backscattered Electrons  imaging, on the other hand, 

distinguishes materials based on their atomic number, 

facilitating elemental analysis within biofilms (A. Ali et al., 
2023). SEM's high magnification capabilities (up to 100,000x or 

more) enable researchers to examine biofilm ultrastructure with 

exceptional clarity, though it requires careful sample preparation 
involving dehydration and coating with a conductive layer to 

optimize imaging conditions (Gaines et al., 2024; A. J. Park et 

al., 2021). Despite its complexity, cost, and technical demands, 
SEM remains indispensable for advancing our understanding of 

biofilm morphology, surface interactions, and composition at the 

microscopic scale (Cleaver & Garnett, 2023). 
The advantages of microscopy in biofilm visualization include 

high spatial resolution, enabling detailed examination of biofilm 

architecture and cellular interactions (Cleaver & Garnett, 2023; 
Relucenti et al., 2021). Real-time imaging capabilities of CLSM 

facilitate dynamic observations of biofilm growth, development, 

and responses to environmental changes or antimicrobial 
treatments (Mhade & Kaushik, 2023). Fluorescence microscopy 

offers flexibility in labeling and quantitative analysis of biofilm 
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components, allowing for precise measurements of biofilm 
biomass, thickness, and cellular density (Idrees et al., 2021). 

However, these techniques have limitations, such as sample 

preparation requirements that can alter biofilm structure and 
introduce artifacts (Relucenti et al., 2021). Depth limitations in 

optical microscopy techniques may restrict imaging of biofilm 

layers deeper within the matrix, while advanced microscopy 
methods like CLSM can be expensive and require specialized 

expertise for operation and data interpretation (Albalawi, 2024). 

Despite these challenges, microscopy remains indispensable for 
advancing our understanding of biofilm biology and developing 

strategies to combat biofilm-associated infections (Cleaver & 

Garnett, 2023). 

 

B. Target identification 

1. Surface charge, aggregation, and hydrophobicity 

Surface charge and hydrophobicity are pivotal factors 

influencing the initial attachment of microorganisms during 

biofilm formation (Zhao et al., 2023). Surface charge refers to 
the electrical charge of a material’s surface, which arises from 

the presence of functional groups capable of ionization, such as 

carboxyl or amino groups (Perchikov et al., 2024). This charge 
influences the interaction between the material and microbial 

cells through electrostatic forces. Techniques like zeta potential 

analysis and electrophoretic mobility are used to quantify 
surface charge. A high zeta potential indicates strong repulsive 

forces between similarly charged particles, potentially 

preventing microbial attachment. Conversely, oppositely 
charged surfaces can attract microbial cells, facilitating adhesion 

and subsequent biofilm formation (Ditu et al., 2024). Factors 

such as pH and ionic strength of the surrounding medium 
significantly influence surface charge by affecting the ionization 

state of functional groups on the surface (K. Wang et al., 2024). 
Hydrophobicity, on the other hand, refers to the tendency of a 

surface to repel water molecules (Crago et al., 2024). This 

property plays a critical role in microbial attachment as many 
microorganisms are inherently hydrophobic and preferentially 

adhere to hydrophobic surfaces (Elfazazi et al., 2021). 

Measurement techniques like contact angle measurement and 
microbial adhesion to hydrocarbons are employed to assess 

surface hydrophobicity (Schneier et al., 2024). A higher contact 

angle indicates greater hydrophobicity, correlating with 
increased microbial adhesion (Bohinc et al., 2024; Fouda et al., 

2024; Nakanishi et al., 2021). Hydrophobic interactions between 

microbial cells and surfaces contribute to the stability and 
cohesion of biofilms, as these interactions enhance the initial 

attachment and subsequent growth of biofilm communities 

(Afrasiabi & Partoazar, 2024). Surface roughness and 
composition are key factors influencing surface hydrophobicity, 

with rougher surfaces and those containing hydrophobic 

functional groups exhibiting higher hydrophobicity (Macko et 
al., 2022). 

In biofilm formation, understanding surface charge and 

hydrophobicity is crucial for designing strategies to control 
microbial attachment (Zhao et al., 2023). By manipulating these 

surface properties, researchers can develop materials and 

coatings that either promote or inhibit biofilm formation, 
depending on the desired application (W. Yin et al., 2021). This 

knowledge is particularly relevant in healthcare settings, 

industrial processes, and environmental management, where 

biofilm formation can impact equipment performance, product 

quality, and ecosystem health (Almatroudi, 2024). Thus, 

detailed characterization and manipulation of surface charge and 
hydrophobicity provide valuable insights into the mechanisms of 

initial microbial attachment and biofilm development, enabling 

targeted interventions to manage biofilm-related issues 
effectively (Shi et al., 2022). 

 

2. Bacterial Motility  

Evaluation of microbial motility, encompassing behaviors such 

as swarming, swimming, and twitching, involves tailored 

techniques for each type of movement (Palma et al., 2022). 
Swimming motility, where bacteria navigate through liquid 

environments using flagella or other appendages, is commonly 

assessed through soft agar assays. In these assays, bacteria are 
inoculated into semi-solid nutrient agar plates with lower agar 

concentrations (typically 0.3-0.5%), allowing them to move 
freely (Partridge & Harshey, 2020). Over time, the spread of 

bacteria away from the point of inoculation indicates their 

swimming ability (Gude et al., 2020). Microscopy, particularly 
phase-contrast or dark-field microscopy, is also employed to 

observe and quantify swimming speed and directionality of 

individual cells, providing detailed insights into their motility 
characteristics (Bente et al., 2020; Palma et al., 2022; Z. Zhang 

et al., 2023). 

Swarming motility, characterized by collective movement of 
bacteria over solid surfaces aided by flagella and EPS, is 

evaluated using swarming plates (Bru et al., 2023). These plates 

have nutrient agar with slightly lower agar concentrations (0.5-
0.7%), which permits bacterial swarming (Hausmann et al., 

2021). Observing the colony expansion rate (swarming 

diameter) and patterns such as dendritic or branching growth 
provides qualitative and quantitative data on swarming behavior 

(Guo et al., 2022; Priyadarshini, 2024). Techniques like time-

lapse microscopy and image analysis further enable tracking and 
measuring parameters such as colony area, expansion velocity, 

and morphology, offering deeper insights into the dynamics of 

swarming motility (Partridge et al., 2023). 
Twitching motility, involving surface-associated movement 

facilitated by extension and retraction of type IV pili or similar 

appendages, is typically assessed through agar plate assays 
(Barton et al., 2024). In these assays, bacteria are stab-

inoculated into nutrient agar plates and allowed to incubate for 

extended periods (24-72 hours) (Rayamajhee et al., 2024). The 
formation of thin, spreading growth zones (halos) around the 

point of inoculation indicates twitching motility. Microscopy is 

also employed to visualize bacterial cells at the edge of these 
zones, providing direct observation of pili-mediated movement, 

including the cycles of extension and retraction (Kühn et al., 
2021; Thongchol et al., 2024). 

 

3. Extracellular Polymeric Substance (EPS) production 

Studying the effect of antibiofilm agents on EPS production 

involves a range of methods aimed at understanding how these 

agents influence the matrix that holds microbial biofilms 
together. EPS is crucial for biofilm formation and stability, 

serving as a protective barrier against antimicrobial agents and 

environmental stresses (Kadirvelu et al., 2024).  
One of the primary approaches involves extracting EPS from 

biofilm samples treated with and without the antibiofilm agent. 

Methods for extraction include sonication, enzymatic digestion, 
or chemical extraction, depending on the nature of the EPS 

components (e.g., polysaccharides, proteins) (L. Huang et al., 

2022). Quantification typically involves colorimetric assays 
such as the Bradford assay for proteins and the phenol-sulfuric 

acid method for polysaccharides (Bublitz et al., 2024; Reinmuth-

Selzle et al., 2022). By comparing the total amount of EPS 
extracted from treated and untreated samples, researchers can 

assess the impact of the antibiofilm agent on EPS production 

(Burlacchini et al., 2024). 
CLSM allows for the visualization and quantification of EPS 

within biofilms (X. Huang et al., 2022). By staining EPS 

components with fluorescent dyes specific to polysaccharides or 
proteins, researchers can observe spatial distribution and relative 

abundance of EPS in response to the antibiofilm agent (Lu et al., 

2023). Image analysis software aids in quantifying fluorescence 

intensity or volume of EPS, providing insights into how the 

agent affects the structure and composition of the biofilm matrix 

(Pinto et al., 2020). 
Enzymatic degradation assays assess the susceptibility of EPS to 

enzymatic degradation, which can be indicative of changes 

induced by antibiofilm agents (Thorn et al., 2021). Biofilm 
samples are treated with enzymes known to degrade EPS 

components (e.g., DNase for DNA, proteinase K for proteins) 

(Jiang et al., 2020; Karygianni et al., 2020). Reduction in EPS 
content after enzymatic treatment indicates the presence and 

composition of EPS in the biofilm matrix, and changes in 

degradation patterns can highlight alterations caused by the 
antibiofilm agent (Amankwah et al., 2021). 

FTIR spectroscopy provides insights into the chemical 

composition of EPS (Gupta et al., 2021). By analyzing FTIR 
spectra of biofilm samples treated with and without the 
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antibiofilm agent, researchers can identify characteristic peaks 
corresponding to EPS components such as polysaccharides and 

proteins (Kowsalya et al., 2023). Changes in peak intensities or 

ratios between treated and untreated samples indicate 
modifications in EPS composition induced by the antibiofilm 

agent, offering qualitative and semi-quantitative data on 

molecular alterations within the biofilm matrix (Mirghani et al., 
2022). 

 

4. Rhamnolipids production 

Studying the effect of antibiofilm agents on rhamnolipid 

production involves employing a variety of specialized methods 

aimed at quantifying and understanding changes in the synthesis 
of these important biosurfactants by bacteria, particularly P. 

aeruginosa (Sarubbo et al., 2022). Rhamnolipids play a 

significant role in biofilm formation and maintenance, 
contributing to the structural integrity and surface colonization 

abilities of microbial communities (Ma tkov et al., 2021).  

One fundamental approach is the extraction and quantification 
of rhamnolipids from bacterial cultures treated with and without 

the antibiofilm agent (Firdose et al., 2021). This process 

typically involves using organic solvents such as chloroform or 
methanol to extract rhamnolipids from bacterial biomass (Bapat 

et al., 2022; Buhori et al., 2024). Quantification can be achieved 

using techniques like spectrophotometer, thin-layer 
chromatography (TLC), high-performance liquid 

chromatography (HPLC), or mass spectrometry (MS) (El-

Housseiny et al., 2020; Zompra et al., 2022). These methods 
allow researchers to measure the concentration and composition 

of rhamnolipids, providing insights into how the antibiofilm 

agent affects their production (Twigg et al., 2021). 
Another crucial method is assessing the surface activity of 

rhamnolipids produced by bacteria (Albasri et al., 2024; Safari 
et al., 2023). Surface tension reduction assays, such as the drop-

collapse method or oil-spreading assay, are commonly employed 

to evaluate the ability of rhamnolipids to reduce surface tension 
or emulsify hydrophobic compounds (Adetunji & Olaniran, 

2021; Ghazi Faisal et al., 2023; Samuel-Osamoka et al., 2023). 

By comparing the surface activity of rhamnolipids from treated 
and untreated cultures, researchers can gauge changes in 

rhamnolipid production induced by the antibiofilm agent (S. 

Yang et al., 2023). 
Liquid Chromatography-Mass Spectrometry (LC-MS) is a 

powerful tool for analyzing the composition and structure of 

rhamnolipids (Eslami et al., 2020). This technique allows for the 
separation, detection, and quantification of rhamnolipid 

molecules based on their mass-to-charge ratio (m/z) (Fu et al., 

2020). By comparing LC-MS profiles of rhamnolipids from 
treated and untreated cultures, researchers can identify 

qualitative and quantitative changes in rhamnolipid production 

induced by the antibiofilm agent (Hijazi et al., 2023; Padaga et 
al., 2024). 

 

5. Acyl homoserine lactone (AHL) production 

Studying the impact of antibiofilm agents on acyl homoserine 

lactone (AHL) production in bacteria involves employing 

specialized methods to quantify and analyze changes in these 
signaling molecules crucial for QS. AHLs regulate various 

bacterial behaviors, including biofilm formation and virulence 

factor expression (Vashistha et al., 2023).  

One fundamental approach is extracting AHLs from bacterial 

cultures treated with and without the antibiofilm agent using 

organic solvents like ethyl acetate or dichloromethane (Stock et 
al., 2021). AHL quantification can be achieved through 

bioassays with AHL-responsive biosensor strains such as 

Chromobacterium violaceum or analytical techniques such as 
LC-MS or Gas Chromatography-Mass Spectrometry (GC-MS) 

(Hor ek et al., 2023). These methods provide quantitative data 

on AHL concentration and profile, revealing how the antibiofilm 
agent affects their production (Stock et al., 2021). 

 

6. Genes expression 
The genes in P. aeruginosa associated with biofilm formation 

and regulation, presented in Table 4.  

 

A. Genes Involved in Biofilm Matrix Biosynthesis: P. 
aeruginosa utilizes several genes to synthesize key components 

of its biofilm matrix (Blanco-Romero et al., 2024). The pel gene 

cluster is crucial for Pel polysaccharide biosynthesis, a major 
constituent that promotes biofilm structural integrity and 

adherence to surfaces (Balducci et al., 2023). Similarly, the psl 

operon contributes to the biosynthesis of Psl polysaccharide, 
which enhances biofilm stability and protects against 

environmental stresses (Chung et al., 2023). Additionally, the 

alg genes are involved in alginate biosynthesis, particularly 
important in mucoid strains where alginate forms a hydrated 

matrix, aiding in biofilm formation and protection (Char za et 

al., 2023). 
 

B. Adhesion and Attachment Genes: Surface attachment is 

facilitated by genes encoding type IV pili (pil) and fimbrial 
adhesins (fim) (Aleksandrowicz et al., 2021). Type IV pili play a 

crucial role in initial attachment to surfaces and mediate 

twitching motility, essential for biofilm initiation (Ahmad et al., 
2023; Odermatt et al., 2023). Fimbrial adhesins further 

contribute to the adherence of P. aeruginosa cells to both biotic 

and abiotic surfaces, initiating biofilm formation and 
colonization (Reichhardt, 2023). 

 

C. Quorum Sensing and Regulatory Genes: QS systems in P. 
aeruginosa, notably the Las and Rhl systems, regulate biofilm 

formation and virulence gene expression (Shao et al., 2020; D. 

Yang et al., 2021). The las genes, including lasI (encoding AHL 
synthase) and lasR (encoding AHL receptor), control the Las 

system, which coordinates early biofilm formation (de Oliveira 

Pereira et al., 2023). Similarly, the rhl genes, such as rhlI and 
rhlR, regulate the Rhl system, influencing biofilm maturation 

and virulence factor production (Asfahl et al., 2022). Regulatory 
genes like gacA/gacS and vfr also play pivotal roles in 

coordinating biofilm formation through global regulatory 

networks, impacting gene expression and biofilm development 
(Coggan et al., 2022; Dela Ahator et al., 2022; Song et al., 

2023). 

 
D. c-di-GMP Signaling Pathway Genes: The cyclic 

diguanylate monophosphate (c-di-GMP) signaling pathway 

controls the switch between planktonic and biofilm lifestyles in 
P. aeruginosa (Kennelly et al., 2024). Genes encoding 

diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) 

modulate intracellular levels of c-di-GMP, influencing biofilm 
initiation, maturation, and dispersal (Banerjee et al., 2021). 

Elevated c-di-GMP levels promote biofilm formation by 

enhancing EPS production and reducing motility, whereas lower 
levels favor planktonic growth and dispersal from the biofilm 

(S. Park & Sauer, 2022). 

 

CHALLENGES 

Understanding and evaluating P. aeruginosa biofilm formation 

present several challenges that impact both research and clinical 
applications. A significant challenge lies in the standardization 

of experimental methods across studies. There is considerable 

variability in growth conditions, media formulations, and 
biofilm quantification techniques used in different research 

settings (Coenye et al., 2024). This lack of consistency makes it 

difficult to compare results between studies accurately and limits 

the reproducibility of findings. Additionally, the complex three-

dimensional structure of P. aeruginosa biofilms poses 

challenges in assessing biomass, architecture, and mechanical 
properties using conventional analytical methods (H. R. Ali et 

al., 2024). The heterogeneous nature of biofilms, with layers of 

cells embedded in an extracellular matrix, requires advanced 
imaging and characterization techniques to capture their full 

complexity (Cometta et al., 2024). 

 
Biofilm-associated antimicrobial resistance is another critical 

challenge (Pai et al., 2023). P. aeruginosa biofilms exhibit 

inherent resistance mechanisms, making them difficult to 
eradicate with conventional antibiotics and immune responses 

(Omran et al., 2024). Understanding the mechanisms underlying 

biofilm resistance is crucial for developing effective treatment 
strategies (Grooters et al., 2024). Moreover, biofilms are 
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dynamic structures that undergo changes in response to 
environmental cues and stressors (X. Wang et al., 2023). 

Studying the temporal dynamics of biofilm formation, 

dispersion, and adaptation requires sophisticated experimental 
approaches that can monitor these processes in real-time. 

 

FUTURE PERSPECTIVES 

Moving forward, several future perspectives can enhance the 

study and management of P. aeruginosa biofilms. 

Standardization of experimental protocols and guidelines is 
paramount to improve the reliability and comparability of 

biofilm research outcomes. Establishing consensus on growth 

conditions, biofilm assays, and data interpretation will facilitate 
more robust and reproducible research across laboratories.  

Advancements in imaging technologies and analytical methods 

offer promising avenues for studying biofilm structure and 
dynamics at higher resolutions. Techniques such as confocal 

laser scanning microscopy, cryo-electron microscopy, and omics 

approaches can provide detailed insights into biofilm 
composition, gene expression profiles, and metabolic activities. 

These tools enable researchers to better understand the 

underlying mechanisms driving biofilm formation and 
resistance. 

Targeting biofilm-specific mechanisms represents another 

critical area of focus. Future research should explore novel 
therapeutic strategies that disrupt key pathways involved in P. 

aeruginosa biofilm formation, such as QS, exopolysaccharide 

production, and persister cell formation. By targeting these 
specific mechanisms, researchers aim to develop more effective 

treatments that can penetrate and eradicate biofilms effectively. 

Collaborative efforts across multidisciplinary fields—including 
microbiology, bioinformatics, engineering, and clinical 

sciences—are essential for advancing biofilm research. 

Integrating diverse expertise can foster innovation in biofilm 
prevention, detection, and treatment strategies. Moreover, 

emphasizing translational research to validate promising 

antibiofilm agents and therapies in clinical settings is crucial. 
Conducting well-designed clinical trials will be instrumental in 

demonstrating the efficacy, safety, and feasibility of new biofilm 

treatments and ultimately improving patient outcomes. 
 

CONCLUSION 

In conclusion, understanding the biofilm formation process of P. 
aeruginosa is crucial for addressing the challenges posed by its 

chronic infections. This review highlights the importance of the 

various developmental stages of biofilms, presenting 
conventional screening methods that are fundamental for biofilm 

evaluation. Furthermore, we emphasize the intricate roles of 

genes and QS in regulating biofilm architecture and function. 
This comprehensive examination sheds light on the complex 

interactions involved in biofilm development, which are critical 

for devising innovative approaches to prevent and treat P. 
aeruginosa biofilm-associated infections. Future research should 

focus on integrating these insights into therapeutic strategies 

aimed at disrupting biofilm formation and enhancing treatment 
efficacy. 
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Table 4: The most common genes involved in Pseudomonas aeruginosa biofilm formation and regulation 

Category Genes Function References  

Biofilm Matrix Biosynthesis Pel 

pellicle 

loci 

Pel polysaccharide biosynthesis (Whitfield et al., 2020) 

 Psl 

Polysaccharide 

synthesis locus 

Psl polysaccharide biosynthesis (Chung et al., 2023) 

 Alg Alginate biosynthesis (in mucoid strains) (J. Wang et al., 2023) 

Adhesion and Attachment Pil Type IV pili involved in surface attachment and twitching 

motility 

(Chen et al., 2022) 

 Fim Fimbrial adhesins facilitating initial surface adherence (Govindarajan & Kandaswamy, 2022) 

Quorum Sensing and Regulation lasI, lasR Las system: AHL synthesis and receptor (Schuster et al., 2023) 

 rhlI, rhlR Rhl system: AHL synthesis and receptor (Groleau et al., 2020) 

 gacA/gacS Gac/Rsm pathway regulatory genes controlling biofilm and 

virulence 

(Song et al., 2023) 

 Vfr Global regulator influencing virulence and biofilm formation (Coggan et al., 2022; Dela Ahator et al., 

2022) 

c-di-GMP Signaling DGCs Diguanylate cyclases regulating c-di-GMP synthesis (Bhasme et al., 2020) 

 PDEs Phosphodiesterases controlling c-di-GMP degradation and 

turnover 

(Bhasme et al., 2020; Feng et al., 2020) 
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