Biodegradation of Phenol: Mini Review

Main Article Content

Razan Saraireh
Batool Asasfeh
Mutaz Saraireh
Kholoud Shiyyab
Rawan Shawawreh

Abstract

This paper is a comprehensive review related to the biological degradation of phenol by microorganisms. The aromatic compound, phenol or hydroxybenzene, is produced industrially or naturally. Many microorganisms that are able to biodegrade phenol have been isolated and at the same time, the metabolic pathways responsible for these metabolic processes have been determined. A large number of bacteria were studied in detail especially, pure cultures as well as the pathways of aerobic phenol metabolism and the enzymes involved. Phenol oxygenation occurred as the initial steps through phenol hydroxylase enzymes leading to formation of catechol, pursued by the splitting of the adjacent ring or in between the two groups of catechol hydroxyls. Thus, the physical and chemical environments plus the chemical structures that affecting biodegradation processes are important determining factors for combating of pollution. This nature of chemical structure for the other aromatic compounds is also a main decisive factor of biodegradability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Articles

References

Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41(4), 432-439.

Abboud, M. M., Saeed, H. A., Tarawneh, K. A., Khleifat, K. M., & Al Tarawneh, A. (2009). Copper uptake by Pseudomonas aeruginosa isolated from infected burn patients. Current microbiology, 59(3), 282-287.

Adjei, M. D., & Ohta, Y. (2000). Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. Journal of bioscience and bioengineering, 89(3), 274-277.

Ahmad, S. A., Shamaan, N. A., Syed, M. A., Dahalan, F. A., Khalil, K. A., Ab Rahman, N. A., & Shukor, M. Y. (2017). Phenol degradation by Acinetobacter sp. in the presence of heavy metals. Journal of the National Science Foundation of Sri Lanka, 45(3).

Agarwal, G. K., and Ghoshal, A. K. (2008). Packed bed dynamics during microbial treatment of wastewater: Modelling and simulation. Bioresour. Technol. 99, 3765–3773.

Agarry, S. E., Durojaiye, A. O., and Solomon, B. O. (2008). Microbial degradation of phenols: A review. Int. J. Environ. Pollut. 32, 12–28.

Aljundi, I. H., Khleifat, K. M., Khlaifat, A. M., Ibrahim, A. M., Tarawneh, K. A., & Tarawneh, S. A. (2010). Biodegradation of 2-chlorobenzoic acid by Klebsiella oxytoca: mathematical modeling and effect of some growth conditions. Industrial & Engineering Chemistry Research, 49(16), 7159-7167.

Aljundi, I. H., & Khleifat, K. M. (2010). Biosorption of lead by E. coli strains expressingVitreoscilla hemoglobin: Isotherm modeling with two?and three?parameter models. Engineering in Life Sciences, 10(3), 225-232.

Al-Asoufi, A., Khlaifat, A., Tarawneh, A., Alsharafa, K., Al-Limoun, M., & Khleifat, K. (2017). Bacterial quality of urinary tract infections in diabetic and non-diabetics of the population of Ma'an Province, Jordan. Pakistan J Biol Sci, 20, 179-88.

Al-Khalid, T., & El-Naas, M. H. (2012). Aerobic biodegradation of phenols: a comprehensive review. Critical Reviews in Environmental Science and Technology, 42(16), 1631-1690.

Al-Limoun, M. O., Khleifat, K. M., Alsharafa, K. Y., Qaralleh, H. N., & Alrawashdeh, S. A. (2019). Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4. Biocatalysis and Biotransformation, 37(2), 139-151.

Allimoun, M. O., Ananzeh, M. R., & Khleifat, K. M. (2015). Screening selection and optimization of extracellular methanol and ethanol tolerant lipase from Acinetobacter sp. K5b4. International Journal of Biosciences, 6(10), 44-56.

ALrawashdeh, I. N., Qaralleh, H., Al-limoun, M. O., & Khleifat, K. M. (2019). Antibactrial Activity of Asteriscus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens. arXiv preprint arXiv:1911.02245.

Althunibat, O.Y., Qaralleh, Q., Al-Dalin, S.Y.A., Abboud, M., Khleifat, K., Majali, I.S., Aldal’in, H.K.H., Rayyan, W.A. and Jaafraa, A. (2016). Effect of Thymol and Carvacrol, the Major Components of Thymus capitatus on the Growth of Pseudomonas aeruginosa. J. Pure. Appl. Microbiol. 10: 367-374

Bhatt, P., Kumar, M. S., Mudliar, S., and Chakrabarti, T. (2007). Biodegradation of chlorinated compounds—a review. Crit. Rev. Env. Sci. Technol. 37, 165–198.

Bi, X. Y., Peng, W., Jiang, H., XU, H. Y., SHI, S. J., & HUANG, J. L. (2007). Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. Journal of Environmental Sciences, 19(12), 1510-1515.

Bollag, J. M., Shuttleworth, K. L., & Anderson, D. H. (1988). Laccase-mediated detoxification of phenolic compounds. Appl. Environ. Microbiol., 54(12), 3086-3091.

Bouwer, E. J., & McCarty, P. L. (1983). Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol., 45(4), 1286-1294.

Chaudhry, Q., Blom-Zandstra, M., Gupta, S. K., & Joner, E. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environmental Science and Pollution Research, 12(1), 34-48.

Chu, J., & Kirsch, E. J. (1973). Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Dev. Ind. Microbiol, 14, 264-273.

Chung, T. P., Tseng, H. Y., and Juang, R. S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem. 38, 1497–1507.

Cook, K. A., & Cain, R. B. (1974). Regulation of aromatic metabolism in the fungi: metabolic control of the 3-oxoadipate pathway in the yeast Rhodotorula mucilaginosa. Microbiology, 85(1), 37-50.

Dagley, S. (1971). Catabolism of aromatic compounds by micro-organisms. In Advances in microbial physiology (Vol. 6, pp. 1-46). Academic Press.

Ehrlich, G. G., Goerlitz, D. F., Godsy, E. M., & Hult, M. (1982). Degradation of phenolic contaminants in ground water by anaerobic bacteria: St. Louis Park, Minnesota. Groundwater, 20(6), 703-710.

El-Naas, M. H., Al-Muhtaseb, S., and Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Hazard. Mater. 164, 720–725.

El-Naas, M., Al-Zuhair, S., and Makhlouf, S. (2010). Batch degradation of phenol in a spouted bed bioreactor system. J. Ind. Eng. Chem. 16, 267–272.

Ereqat, S. I., Abdelkader, A. A., Nasereddin, A. F., Al-Jawabreh, A. O., Zaid, T. M., Letnik, I., & Abdeen, Z. A. (2018). Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine. Journal of Environmental Science and Health, Part A, 53(1), 39-45.

Ghioureliotis, M., & Nicell, J. A. (1999). Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol. Enzyme and Microbial Technology, 25(3-5), 185-193.

Godsy, E. M., Goerlitz, D. F., & Ehrlich, G. G. (1983). Methanogenesis of phenolic compounds by a bacterial consortium from a contaminated aquifer in St. Louis Park, Minnesota. Bulletin of environmental contamination and toxicology, 30(1), 261-268.

Gonzalez, G., Herrera, G., Garc?a, M. T., & Pena, M. (2001). Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource technology, 80(2), 137-142.

Hamdy, M. K., Sherrer, E. L., Weiser, H. H., & Sheets, W. D. (1954). Microbiological factors in the treatment of phenolic wastes. Applied microbiology, 2(3), 143.

Heipieper, H. J., Diefenbach, R. U. T. H., & Keweloh, H. (1992). Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol., 58(6), 1847-1852.

Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12(10), 409-415.

Hill, G. A., Milne, B. J., & Nawrocki, P. A. (1996). Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus. Applied microbiology and biotechnology, 46(2), 163-168.

HuiJie, L., CaiYun, Y., Yun, T., GuangHui, L., & TianLing, Z. (2011). Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. International biodeterioration & biodegradation, 65(2), 269-275.

Imran, A., Saadalla, M. J. A., Khan, S. U., Mirza, M. S., Malik, K. A., & Hafeez, F. Y. (2014). Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Annals of Microbiology, 64(4), 1797-1806.

Jaafreh, M., Khleifat, K. M., Qaralleh, H., & Al-limoun, M. O. (2019). Antibacterial and Antioxidant Activities of Centeurea damascena Methanolic Extract. arXiv preprint arXiv:1911.02243.

Keweloh, H., Diefenbach, R., & Rehm, H. J. (1991). Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Archives of microbiology, 157(1), 49-53.

Kilic¸, N. K. (2009). Enhancement of phenol biodegradation by Ochrobactrumsp. isolated from industrial wastewaters. Int. Biodeterior. Biodegrad. 63, 778–781.

Khleifat, K. M., Nawayseh, K., Adjeroud, N. R., Khlaifat, A. M., Aljundi, I. H., & Tarawneh, K. A. (2009). Cadmium-resistance plasmid affected Cd+ 2 uptake more than Cd+ 2 adsorption in Klebsiella oxytoca. Bioremediation journal, 13(4), 159-170.

Khleifat, K. M., Al-limoun, M. O., Alsharafa, K. Y., Qaralleh, H., & Al Tarawneh, A. A. (2019). Tendency of using different aromatic compounds as substrates by 2, 4-DNT dioxygenase expressed by pJS39 carrying the gene dntA from Burkholderia sp. strain DNT. Bioremediation journal, 23(1), 22-31.

Khleifat, K. M., Halasah, R. A., Tarawneh, K. A., Halasah, Z., Shawabkeh, R., & Wedyan, M. A. (2010). Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agr Biol, 12, 17-25.

Khleifat, K. M., Tarawneh, K. A., Wedyan, M. A., Al-Tarawneh, A. A., & Al Sharafa, K. (2008a). Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Current microbiology, 57(4), 364-370.

Khleifat, K. M. (2007). Effect of substrate adaptation, carbon starvation and cell density on the biodegradation of phenol by Actinobacillus sp. Fresenius Environmental Bulletin, 16(7), 726-730.

Khleifat, K. M., Shawabkeh, R., Al-Majali, I., & Tarawneh, K. (2007a). Biodegradation kinetics of phenol by Klebsiella oxytoca: effect of carbon and Nitrogen source. Fresenius Environmental Bulletin, 16(5), 489.

Khleifat, K., Al-Majali, I., Shawabkeh, R., & Tarawneh, K. (2007b). Effect of carbon and nitrogen sources on the biodegradation of phenol by Klebsiella oxytoca and growth kinetic characteristics. Fresenius Environmental Bulletin, 16(5), 1-7.

Khleifat, K. M., Sharaf, E. F., & Al-limoun, M. O. (2015). Biodegradation of 2-chlorobenzoic acid by enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediation Journal, 19(3), 207-217.

Khleifat, K. M. (2010). Characterization of 2, 4-Dinitrotoluene Dioxygenase from Recombinant Esherichia coli Strain PFJS39: Its Direct Interaction with Vitreoscilla Hemoglobin. Bioremediation Journal, 14(1), 38-53.

Khleifat, K., & Abboud, M. M. (2003). Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and ??amylase activity in transformed Enterobacter aerogenes. Journal of applied microbiology, 94(6), 1052-1058.

Khleifat, K. M., Abboud, M. M., & Al-Mustafa, A. H. (2006a). Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes. Process Biochemistry, 41(4), 930-934.

Khleifat, K.M., Abboud, M.M., Omar, S.S. and Al-Kurishy, J.H. (2006b). Urinary tract infection in South Jordanian population. J. Med. Sci. 6: 5-11.

Khleifat, K. M., Abboud, M. M., Al-Mustafa, A. H., & Al-Sharafa, K. Y. (2006c). Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of ?-galactosidase in Enterobacter aerogenes. Current microbiology, 53(4), 277.

Khleifat, K. M. (2006a). Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochemistry, 41(9), 2010-2016.

Khleifat, K. M. (2006b). Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme and microbial technology, 39(5), 1030-1035.

Khleifat, K. M. (2006c). Correlation Between Bacterial Hemoglobin and Carbon Sources: Their Effect on Copper Uptake by Transformed E. coli Strain ?DH5. Current microbiology, 52(1), 64-68.

Khleifat, K. M., Abboud, M., Laymun, M., Al-Sharafa, K., & Tarawneh, K. (2006d). Effect of variation in copper sources and growth conditions on the copper uptake by bacterial hemoglobin gene (vgb) bearing E. coli. Pakistan Journal of Biological Sciences, 9(11), 2022-2031.

Khleifat, K. M., Tarawneh, K. A., Wedyan, M. A., Al-Tarawneh, A. A., & Al Sharafa, K. (2008b). Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Current microbiology, 57(4), 364-370.

Khleifat, K. M., Sharaf, E. F., & Al-limoun, M. O. (2015). Biodegradation of 2-chlorobenzoic acid by enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediation Journal, 19(3), 207-217.

Kobayshi H, Rittman BE (1982). Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 19: 470-481A.

Knackmuss, H. J., & Hellwig, M. (1978). Utilization and cooxidation of chlorinated phenols byPseudomonas sp. B 13. Archives of microbiology, 117(1), 1-7.

Krijgsheld, K. R., & Van der Gen, A. (1986). Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment: Part I: Monochlorophenols and 2, 4-dichlorophenol. Chemosphere, 15(7), 825-860.

Kumaran, P., & Paruchuri, Y. L. (1997). Kinetics of phenol biotransformation. Water research, 31(1), 11-22.

Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22(2), 151-159.

Lakshmi, M. C., & Sridevi, V. (2015). A review on biodegradation of phenol from industrial effluents. I Control Pollution, 25(1), 1-15.

Li, H. Q., Han, H. J., Du, M. A., & Wang, W. (2011). Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresource technology, 102(7), 4667-4673.

Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 101(17), 6740-6744.

Liu, Y. J., Zhang, A. N., and Wang, X. C. (2009a). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem. Eng. J. 44, 187–192.

Liu, Q. S., Liu, Y., Show, K. Y., and Tay, J. H. (2009b). Toxicity effect of phenolon aerobic granules. Environ. Technol. 30, 69–74.

Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., & Liu, S. (2016). Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. International journal of environmental research and public health, 13(3), 300.

Lob, K. C., and P. P. Tar. 2000. Effect of additional carbon sources on biodegradation of phenol. Bull. Environ. Contam. Toxicol. 64:756– 763.

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., and Nava-Saucedo, J. (2008). Polymer biodegradation: Mechanisms and estimation techniques.Chemosphere 73, 429–442.

Majali, I.S., Oran, S.A., Khaled, M.A. khleifat, Qaralleh, H., Rayyan, W.A. and Althunibat, O.Y. (2015). Assessment of the antibacterial effects of Moringa peregrina extracts. African J. Microbiol. Res. 9: 2410-2414.

Mateles, R. I., & Chian, S. K. (1969). Correction. Kinetics of substrate uptake in pure and mixed culture. Environmental Science & Technology, 3(8), 769-769

McKinney, R. E., Tomlinson, H. D., & Wilcox, R. L. (1956). Metabolism of aromatic compounds by activated sludge. Sewage and Industrial Wastes, 547-557.

Mishra, V. K., & Kumar, N. (2017). Microbial degradation of phenol: a review. Journal of Water Pollution and Purification Research, 4(1), 17-22.

Nakagawa, H., & Takeda, Y. (1962). Phenol hydroxylase. Biochimica et biophysica acta, 62(2), 423-426.

Nair, C. I., Jayachandran, K., and Shashidhar, S. (2008). Biodegradation of phenol. Afr. J. Biotechnol. 7, 4951–4958.

Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., ... & Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological research, 209, 21-32.

Orhan, F. (2016). Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). brazilian journal of microbiology, 47(3), 621-627.

Pradeep, N. V., Anupama, S., Navya, K., Shalini, H. N., Idris, M., & Hampannavar, U. S. (2015). Biological removal of phenol from wastewaters: a mini review. Applied Water Science, 5(2), 105-112.

Qaralleh, H., Khleifat, K. M., Al-Limoun, M. O., Alzedaneen, F. Y., & Al-Tawarah, N. (2019). Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025016.

Rogoff, M. H. (1961). Oxidation of aromatic compounds by bacteria. Adv. Appl. Microbiol, 3(193).

Rubin, H. E., & Alexander, M. (1983). Effect of nutrients on the rates of mineralization of trace concentrations of phenol and p-nitrophenol. Environmental science & technology, 17(2), 104-107.

Silambarasan, S., & Vangnai, A. S. (2016). Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. Journal of hazardous materials, 302, 426-436.

Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., and Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4- dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme Microb. Technol. 39, 1036–1041.

Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., Rad, I., Ahadi, S., Raheb, J., and Abbasi, H. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination; 246, 577–594.

Tabak, H. H., Chambers, C. W., & Kabler, P. W. (1964). Microbial metabolism of aromatic compounds I.: Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. Journal of bacteriology, 87(4), 910-919.

Tarawneh, K. A., Irshaid, F., Ajlundi, I. H., Abboud, M. M., Mohammed, N. A., & Khleifat, A. M. (2010). Biodegradation kinetics of four substituted chlorobenzoic acids by Enterobacter aerogenes. Bioremediation journal, 14(2), 55-66.

Tarawneh, K. A., Halasah, Z. A., Khleifat, A. M., Batarseh, M. I., Khleifat, K. M., & Al-Mustafa, A. H. (2011). Evaluation of cefaclor oral suspensions stability using reversed phase high performance liquid chromatography and antimicrobial diffusion methods. Pakistan journal of pharmaceutical sciences, 24(3).

Tarawneh, K., AL-Quraishi, F. M., Qaralleh, H., Al Tarawneh, A., Allimoun, M. O., & Khleifat, K. M. (2019) Biodegradation of Chlorobenzoic Acid Substitutes, Particularly, 2-Chlorobenzoic Acid by Aeromonas hydrophila. Biomedicine, 5(2), 124-135.

Van Schie, P. M., & Young, L. Y. (2000). Biodegradation of phenol: mechanisms and applications. Bioremediation Journal, 4(1), 1-18.

Varga, J. M., & Neujahr, H. Y. (1970). Purification and Properties of Catechol 1, 2?Oxygenase from Trichosporon cutaneum. European journal of biochemistry, 12(3), 427-434.

Zeidan, R., Oran, S., Khleifat, K., & Matar, S. (2013). Antimicrobial activity of leaf and fruit extracts of Jordanian Rubus sanguineus Friv.(Rosaceae). African Journal of Microobiology Research, 7, 5114-5118µ.

Zhao, G., Zhou, L., Li, Y., Liu, X., Ren, X., and Liu, X. (2009). Enhancement ofphenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. J. Hazard. Mater. 169,402–410.

Wang, Y., Tian, Y., Han, B., Zhaw, H. B., Bi, J. N., and Cai, B. L. (2007). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 19, 222–225.

Wang, Y., Song, J., Zhao, W., He, X., Chen, J., & Xiao, M. (2011). In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. Journal of hazardous materials, 192(1), 354-360.

Wang, Y., Jiang, Q., Zhou, C., Chen, B., Zhao, W., Song, J., ... & Xiao, M. (2014). In?situ remediation of contaminated farmland by horizontal transfer of degradative plasmids among rhizosphere bacteria. Soil use and management, 30(2), 303-309.

Yamaga, F., Washio, K., & Morikawa, M. (2010). Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environmental science & technology, 44(16), 6470-6474.

Yang, L., Wang, Y., Song, J., Zhao, W., He, X., Chen, J., & Xiao, M. (2011). Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biology and Biochemistry, 43(5), 915-922.

Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment international, 33(3), 406-413.

Zumriye, A., & Gultac, B. (1999). Determination of the effective diffusion coefficient of phenol in calcium alginate immobilized Pseudomonas putida. Enzyme and Microbial Technology, 25, 344-348.