Chemical analysis and protective effect of Elaeis guineensis kernel oil against calcium ion-induced mitochondrial membrane permeability transition

Main Article Content

Anyasor Nduka
Onuoha Elizabeth
Gisarin Olusola

Abstract

This study evaluated the chemical property and effect of Elaeis guineensis kernel (EGK) oil on calcium ion-induced mitochondrial membrane permeability transition (MMPT) using standard in vitro methods. Results showed the EGK oil values for iodine (46.53±1.8 Wij’s), saponification (246.33±1.2 mgKOH/g), acid (10.32±2.5%) and peroxide (3.03±0.4 mEq/kg). EGK oil (150 µg/ml) exhibited a maximal inhibitory (80.9±4.8%) effect on MMPT. Furthermore, EGK oil (100 µg/ml) maximally stabilized (96.72±5.2%) erythrocyte membrane against hypotonicity-induced hemolysis. In addition, EGK oil (250 µg/ml) inhibited heat-induced protein denaturation by 12.42±2.6% and mitochondria lipid peroxidation by 61.03±3.7%. This study showed that EGK oil could possess mitochondria protective agent(s).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Journal of Basic And Applied Research

References

AOAC (1984). Association of Official Analytical Chemists. Official Methods of Analysis, 14th ed. Washington D.C.: V.A. Arlington Press.

Akinyeye, R.C., Adeyeye, E.I., Fasakina, O. & Agboola, A. (2011). Physio-chemical properties and anti-nutritional factors of palm fruit products (E. guineensis Jacq.) from Ekiti State, Nigeria. Electron Journal of Environmental, Agricultural and Food Chemistry, 10(5): 2190-198.

Ajith, T.A.(2010). Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe. Indian Journal of Clinical Biochemistry, 25(1): 67-73.

Anyasor, G.N., Onajobi, F.D., Osilesi, O. & Adebawo, O.(2014). Hexane fraction of Costus afer ker Gawl. Leaves inhibited mitochondrial membrane permeability transition, F1F¬0 adenosine triphosphatase and scavenged nitric oxide and hydrogen peroxide. Journal Investigative Biochemistry, 3(2): 78-84.

Anyasor, G.N., Onajobi, F.D., Osilesi, O., Adebawo, O. & Efere, M.O.(2015). Evaluation of Costus afer Ker Gawl. in vitro anti-inflammatory activity and its chemical constituents identified using gas chromatography-mass spectrometry analysis. Journal of Coastal Life Medicine, 3(2): 132-138.

Bernardi, P. & Di Lisa F.(2015). The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. Journal of Molecular Cell Cardiology, 78: 100-6.

Carlos, F-M., Elena, G-B. & Pilar, G-S.(2015). Mitochondria-targeted protective compounds in Parkinson’s and Alzheimer’s Diseases. Oxidative Medicine Cellular Longevity, 2015: Article ID 408927. doi:10.1155/2015/408927.

Demian, M.J.(1990). Principles of food chemistry, 2nd ed. London: Van Nostrond Reinhold International Company Ltd.

Desagher, S. & Martinou, J.C.(2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10: 369-377.

Gervajio, G.C.(2005). Fatty acids and derivatives from coconut oil. In: Bailey’s industrial oil and fat produts, 6th ed. John Wiley and Sons Inc.

Gunstone, F.D. 2013. Commodity oils and fats- palm kernel and coconut (lauric) oils. Retrieved from http://www.lipidlibrary.aocs.org/market/lauric.htm on [Last accessed on 2015 February 10]

Halestrap, A.P., Clarke, S.J. & Javadov, S.A. (2004). Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovascular Research, 61: 372-385.

Javadov, S. (2015). The calcium-ROS-pH triangle and mitochondrial permeability transition: challenges to mimic cardiac ischemia-reperfusion. Front Physiology, 6:83.

Johnson, D. & Lardy, H. (1967). Isolation of liver or kidney mitochondria. Methods in Enzymology 10: 94-96.

Khan, N.A., Govindaraj, P., Meena, A.K. & Thangaraj, K.(2015). Mitochondria disorders: challenges in diagnosis and treatment. Indian Journal of Medical Research, 141: 13-26.

Kirpich, I.A., Miller, M.E., Cave, M.C., Swati, J-B. & McClain, C.J.(2016). Alcoholic liver disease: update on the role of dietary fat. Biomolecules, 6(1): 2-17.

Lapidus, R.G. & Sokolove, P.M. (1993). Spermine inhibition of permeability transition of isolated rat liver mitochondria: an investigation mechanism. Archives Biochemistry Biophysics, 306(1): 246-253.

Larmache, F., Carcenac, C., Gonthier, B., Cotte-Rouselle, C., Chauvin, C., Barret, L., Leverve, X., Savasta, M. & Fontaine, E. (2012). Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice. Chemical Research in Toxicology, 26(1): 78-88.

Llorente-Folch, I., Rueda, C.B., Pardo, B., Szabadkai, G., Duchen, M.R. & Satrustegui, J.(2015). The regulation of neuronal mitochondrial metabolism by calcium. Journal of Physiology,16:3447-3462.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J.(1951). Protein measurement with the Folin phenol reagent. Journal of Biology Chemistry 193: 265-275.

Mahmoud, H., Jalal, P., Fahimeh, S., Kaveh, T., Fahimeh, A. & Gholamreza, B.(2015). Antimony induces oxidative stress and cell death in normal hepatocytes. Toxicology and Environmental Chemistry, 97(2): 1-10.

Matthaus B. (2007). Use of palm oil for frying in comparison with other high-stability oils. European Journal of Lipid Science and Technology, 109(4): 400-9.

Mizushima, Y. & Kobayashi, M. (1968). Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology, 20: 169-173.

Obahiagbon, F.I. (2012). A Review: Aspects of the African oil palm (Elaeis guineesis Jacq.). American Journal of Biochemistry and Molecular Biology, 1-14.

Ohkawa, H., Ohishi, N. & Yagi, K.(1979). Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351-358.

Oyedapo, O.O., Akinpelu, B.A. & Orefuwa, S.A. (2004). Anti-inflammatory effect of Threobroma cacao, root extract. Journal of Medicinal Plants, 5: 161-166.

Payne, B.A.I. & Patrick, F.C. (2015). Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta,1847 (11): 1347-53.

Pearson, D. (1970). The Chemical Analysis of Food, 6th ed. London: J.A. Churchill;p.510-515.

Pearson, D. (1981). The Chemical Analysis of Food, 8th ed. London: J.A. Churchill; p.535.

Subhashini, B. & Edgar, A.J. (2013). Mitochondria and reactive oxygen species. Physiology and Pathophysiology, 14: 6306-44.

Sundram, K., Sambanthamurthi, R. & Tan, Y.A.(2003). Palm fruit chemistry and nutrition. Asia Pacific Journal of Clinical Nutrition, 12(3): 355-362.

Tiku, N.E. and Bullem, F.A. (2015). Oil palm marketing, Nigeria-lessons to learn from Malaysia experience, opportunities and foreign direct investment in Cross River State. Journal of Development and Agricultural Economics, 7(7): 243-52.

Treulen, F., Uribe, P., Boguen, R. & Villegas, J.V.(2016). Mitochondria permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa. Molecular Human Reproduction, 22(2): 83-92.

Vangalapati, M. & Chippanda, S.C. (2011). Antioxidant, anti-inflammatory and anti-arthritic activity of Centella asiatica extracts. Journal of Chemical, Biology and Physical Sciences,1(2): 260-269.

Vaughan, J.G. & Geissler, C.A.(2009). The new Oxford Book of food plants. United Kingdom: Oxford University Press; p.249.

Via, L.D., Garcia-Argaez, A.N., Martinez-Vazquez, M., Grancara, S., Martinis, P., & Toninello, A (2014). Mitochondrial permeability transition as target of anti-cancer drugs. Current Pharmaceutical Design, 20: 223-44.

Wang, Y., Li, Y., Pritchard, H.W. & Wang, X. (2015). Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. Plant Journal, 81: 438-52.

Williams, L.A.(2009). Further insight into the bovine serum albumin assay (the in vitro anti-inflammatory assay). West Indian Medical Journal, 58: 181.

Zhong, H. & Yin. H.(2015). Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biology, 4: 193-9.